Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Rong Hu, ${ }^{\text {a }}$ * Li-Li Wang ${ }^{\text {b }}$ and Jian-Ming Gu ${ }^{\mathbf{a}}$

${ }^{\text {a }}$ Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028,
People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.065$
$w R$ factor $=0.175$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-[4-Cyano-3-(trifluoromethyl)phenyl]-3-(4-fluoro-phenylsulfanyl)-2-hydroxy-2-methylpropionamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in a conformation where the two benzene rings are parallel. In the crystal structure, molecules form one-dimensional extended chains via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The title compound, (I), was prepared as an intermediate in the synthesis of bicalutamide, a nonsteroidal antiandrogen which acts on the male hormones (androgens) but has no steroidal effects (Tucker et al., 1988; Xiao et al., 2003). The crystal structure of N -(4-cyano-3-trifluoromethyl-phenyl)-3-(4-fluorophenylsulfanyl)-2-hydroxy-2-methylpropionamide chloroform solvate has been reported (Tang \& Gu, 2005). We report here the crystal structure of solvent-free N-[4-cyano-3-(trifluoromethyl)phenyl]-3-(4-fluorophenylsulfanyl)-2-hydroxy-2-methylpropionamide, (I). In the crystal structure, there are minor differences in the conformation compared with that of the chloroform solvate. The bond lengths and bond angles are identical. The two aromatic ring planes are parallel to each other, forming a dihedral angle of $1.22(18)^{\circ}$. Molecules are linked into one-dimensional extended chains by intermolecular hydrogen bonds (Table 1).

(I)

Experimental

2-Hydroxy-2-methyl-3-p-tolylsulfanylpropionic acid (36.5 g , 159 mmol), 2-trifluoromethyl-4-aminobenzonitrile ($38.0 \mathrm{~g}, 200 \mathrm{mmol}$) and N, N-dimethylacetamide (300 ml) were mixed in a 500 ml threenecked bottle, and stirred at 263 K . Thionyl chloride (12 ml , 164 mmol) was then dropped into the above solution over a period of 30 min , with the reaction mixture kept at $258-263 \mathrm{~K}$; the mixture continued to react for 24 h . After that time, the reaction solution was poured into 600 ml of ice-water, followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{HCl}\left(3 \mathrm{~mol} \mathrm{l}^{-1}, 4 \times 300 \mathrm{ml}\right)$, NaCl (saturated solution, $2 \times 150 \mathrm{ml}$), NaHCO_{3} (saturated solution, $3 \times 150 \mathrm{ml}$) and NaCl (saturated solution, $2 \times 150 \mathrm{ml}$), respectively, and then dried with anhydrous MgSO_{4}; the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed

Received 15 August 2006
Accepted 13 September 2006

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.

Figure 2
A chain of molecules in (I). Displacement ellipsoids are drawn at the 30\% probability level and hydrogen bonds are shown as dashed lines. Both disorder components are shown. [Symmetry codes: (i) $x-1, y-1, z-1$ (ii) $x+1, y+1, z+1$.]
under vacuum distillation. The final product was recrystallized from a mixture of toluene and petroleum ether (5:1 $\mathrm{v} / \mathrm{v})$, and crystals (26 g , yield 41%) were obtained (Sepp-Lorenzino \& Slovin, 2000; Thurlow, 1998). Colorless crystals of (I) suitable for X-ray diffraction were obtained from acetone.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=398.37 \\
& \text { Triclinic, } P \overline{1} \\
& a=10.136(5) \AA \\
& b=10.343(6) \AA \\
& c=10.524(4) \AA \\
& \alpha=106.82(2)^{\circ} \\
& \beta=116.97(2)^{\circ} \\
& \gamma=95.19(2)^{\circ}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
4135 independent reflections 2814 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$ diffractometer
ω scans
Absorption correction: none
9009 measured reflections
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.175$
$S=1.01$
4135 reflections
253 parameters
$w=1 /\left[0.0015 F_{\mathrm{o}}{ }^{2}+3 \sigma\left(F_{\mathrm{o}}^{2}\right)+0.5\right] /$
$\left(4 F_{\mathrm{o}}{ }^{2}\right)$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 101 \cdots \mathrm{~N}^{\mathrm{i}}$	0.92	2.00	$2.918(2)$	178
$\mathrm{~N} 1-\mathrm{H} 111 \cdots 1^{\mathrm{ii}}$	0.86	2.62	$3.167(3)$	123

Symmetry codes: (i) $x+1, y+1, z+1$; (ii) $-x+2,-y+1,-z+2$.

H atoms of the hydroxy and amide groups were located in difference Fourier maps and included in the refinement as riding, with the as-found $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths; their isotropic displacement parameters were initially refined and then fixed in the final stage. The other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA$ and included in the refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sepp-Lorenzino, L. \& Slovin, S. (2000). Exp. Opin. Ther. Patents, 10, 18331842.

Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Tang, G.-P. \& Gu, J.-M. (2005). Acta Cryst. E61, o3184-o3186.
Thurlow, R. J. (1998). Emerg. Drugs, 3, 225-246.
Tucker, H., Crook, J. W. \& Chesterson, G. J. (1988). J. Med. Chem. 31, 954-959.
Xiao, T., Zhang, X. Q., Tian, C. M. \& Wang, J. T. (2003). Chin. J. Synth. Chem. 11, 346-348.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

